208 research outputs found

    Passivity-based harmonic control through series/parallel damping of an H-bridge rectifier

    Get PDF
    Nowadays the H-bridge is one of the preferred solutions to connect DC loads or distributed sources to the single-phase grid. The control aims are: sinusoidal grid current with unity power factor and optimal DC voltage regulation capability. These objectives should be satisfied, regardless the conditions of the grid, the DC load/source and the converter nonlinearities. In this paper a passivity-based approach is thoroughly investigated proposing a damping-based solution for the error dynamics. Practical experiments with a real converter validate the analysis.

    Impact of PWM Voltage Waveforms in High-Speed Drives: A Survey on High-Frequency Motor Models and Partial Discharge Phenomenon

    Get PDF
    The insulation system’s dielectric of the electric motor is very often subjected to severe electrical stress generated by the high dv/dt seen at the machine’s terminals. The electrical stress and high reflected wave transient overvoltage are even more evident in case of high-speed machines fed by high-frequency (HF) converters featuring very fast wide-bandgap devices. They are promoting the occurrence of partial discharges and consequently accelerate ageing. As this is serious issue and the main cause of the drive failure, it is important to analyse and characterise the surges at the motor terminals. Several HF models of motors have been proposed in the literature for this purpose. This article presents a survey on HF motor models, which is crucial in understanding and studying the most critical parameter identification and overvoltage mitigation techniques. Moreover, it offers a comparison of the models’ main features as well as a comparison with the experimental voltage waveform at motor terminals. A general overview of the partial discharge (PD) phenomenon is also provided, as it is favoured by HF operation and together with HF motor modelling provides key insights to the insulation ageing issue. In particular, an analysis of the effects of PWM waveform affecting insulation is given, as well as useful methods for developing strategies for the inspection and maintenance of winding insulation

    Passivity-based harmonic control through series/parallel damping of an H-bridge rectifier

    Get PDF

    Passivity-based harmonic control through series/parallel damping of an H-bridge rectifier

    Get PDF

    The Importance of Mehran Score to Predict Acute Kidney Injury in Patients with TAVI: A Large Multicenter Cohort Study

    Get PDF
    Background: Transcatheter aortic valve implantation (TAVI) has developed as an alternative to surgery for symptomatic high-risk patients with aortic stenosis (AS). An important complication of TAVI is acute kidney injury. The purpose of the study was to investigate if the Mehran Score (MS) could be used to predict acute kidney injury (AKI) in TAVI patients. Methods: This is a multicenter, retrospective, observational study including 1180 patients with severe AS. The MS comprised eight clinical and procedural variables: hypotension, congestive heart failure class, glomerular filtration rate, diabetes, age >75 years, anemia, need for intra-aortic balloon pump, and contrast agent volume use. We assessed the sensitivity and specificity of the MS in predicting AKI following TAVI, as well as the predictive value of MS with each AKI-related characteristic. Results: Patients were categorized into four risk groups based on MS: low (≤5), moderate (6–10), high (11–15), and very high (≥16). Post-procedural AKI was observed in 139 patients (11.8%). MS classes had a higher risk of AKI in the multivariate analysis (HR 1.38, 95% CI, 1.43–1.63, p < 0.01). The best cutoff for MS to predict the onset of AKI was 13.0 (AUC, 0.62; 95% CI, 0.57–0.67), whereas the best cutoff for eGFR was 42.0 mL/min/1.73 m2 (AUC, 0.61; 95% CI, 0.56–0.67). Conclusions: MS was shown to be a predictor of AKI development in TAVI patients

    Passivity-based harmonic control through series/parallel damping of an H-bridge rectifier

    Get PDF

    Cloaking nanoparticles with protein corona shield for targeted drug delivery

    Get PDF
    Targeted drug delivery using nanoparticles can minimize the side effects of conventional pharmaceutical agents and enhance their efficacy. However, translating nanoparticle-based agents into clinical applications still remains a challenge due to the difficulty in regulating interactions on the interfaces between nanoparticles and biological systems. Here, we present a targeting strategy for nanoparticles incorporated with a supramolecularly pre-coated recombinant fusion protein in which HER2-binding affibody combines with glutathione-S-transferase. Once thermodynamically stabilized in preferred orientations on the nanoparticles, the adsorbed fusion proteins as a corona minimize interactions with serum proteins to prevent the clearance of nanoparticles by macrophages, while ensuring systematic targeting functions in vitro and in vivo. This study provides insight into the use of the supramolecularly built protein corona shield as a targeting agent through regulating the interfaces between nanoparticles and biological systems

    Drug-Initiated Synthesis of Cladribine-Based Polymer Prodrug Nanoparticles: Biological Evaluation and Structure Activity Relationships

    Get PDF
    International audienceBy using two reversible deactivation radical polymerization techniques, either nitroxide-mediated polymerization or reversible addition-fragmentation chain transfer polymerization, the "drug-initiated" approach was applied to cladribine (CdA) as an anticancer drug to synthesize small libraries of well-defined and self-stabilized CdA-based polymer prodrug nanoparticles, differing from the nature and the molar mass of the grown polymer, and the nature of the linker between CdA and the polymer, thus allowing structure-cytotoxicity relationships to be determined. Their biological evaluation was investigated in vitro on L1210 cancer cells. The preparation of fluorescent CdA-based nanoparticles with excellent imaging ability was also reported by applying the "drug-initiated" approach to an aggregation-induced emission-active dye

    Inter-laboratory comparison of nanoparticle size measurements using dynamic light scattering and differential centrifugal sedimentation

    Get PDF
    Nanoparticle in vitro toxicity studies often report contradictory results with one main reason being insufficient material characterization. In particular the characterization of nanoparticles in biological media remains challenging. Our aim was to provide robust protocols for two of the most commonly applied techniques for particle sizing, i.e. dynamic light scattering (DLS) and differential centrifugal sedimentation (DCS) that should be readily applicable also for users not specialized in nanoparticle physico-chemical characterization. A large number of participants (40, although not all participated in all rounds) were recruited for a series of inter-laboratory comparison (ILC) studies covering many different instrument types, commercial and custom-built, as another possible source of variation. ILCs were organized in a consecutive manner starting with dispersions in water employing well-characterized near-spherical silica nanoparticles (nominal 19 nm and 100 nm diameter) and two types of functionalized spherical polystyrene nanoparticles (nominal 50 nm diameter). At first each laboratory used their in-house established procedures. In particular for the 19 nm silica particles, the reproducibility of the methods was unacceptably high (reported results were between 10 nm and 50 nm). When comparing the results of the first ILC round it was observed that the DCS methods performed significantly worse than the DLS methods, thus emphasizing the need for standard operating procedures (SOPs). SOPs have been developed by four expert laboratories but were tested for robustness by a larger number of independent users in a second ILC (11 for DLS and 4 for DCS). In a similar approach another SOP for complex biological fluids, i.e. cell culture medium containing serum was developed, again confirmed via an ILC with 8 participating laboratories. Our study confirms that well-established and fit-for-purpose SOPs are indispensable for obtaining reliable and comparable particle size data. Our results also show that these SOPs must be optimized with respect to the intended measurement system (e.g. particle size technique, type of dispersant) and that they must be sufficiently detailed (e.g. avoiding ambiguity regarding measurand definition, etc.). SOPs may be developed by a small number of expert laboratories but for their widespread applicability they need to be verified by a larger number of laboratories
    corecore